近年来政府和商业实体的面部识别(FR)技术的快速采用提出了对公民自由和隐私的担忧。作为回应,已经开发了一套广泛的所谓“反面部识别”(AFR)工具,以帮助用户避免不需要的面部识别。在过去几年中提出的一组AFR工具是广泛的,快速发展,需要退回措施,以考虑AFR系统的更广泛的设计空间和长期挑战。本文旨在填补该差距,并提供对AFR研究景观的第一次综合分析。使用FR系统的运营级作为起点,我们创建了一个系统框架,用于分析不同AFR方法的益处和权衡。然后,我们考虑到AFR工具面临的技术和社会挑战,并提出在该领域的未来研究方向。
translated by 谷歌翻译
在对抗机器学习中,防止对深度学习系统的攻击的新防御能力在释放更强大的攻击后不久就会破坏。在这种情况下,法医工具可以通过追溯成功的根本原因来为现有防御措施提供宝贵的补充,并为缓解措施提供前进的途径,以防止将来采取类似的攻击。在本文中,我们描述了我们为开发用于深度神经网络毒物攻击的法医追溯工具的努力。我们提出了一种新型的迭代聚类和修剪解决方案,该解决方案修剪了“无辜”训练样本,直到所有剩余的是一组造成攻击的中毒数据。我们的方法群群训练样本基于它们对模型参数的影响,然后使用有效的数据解读方法来修剪无辜簇。我们从经验上证明了系统对三种类型的肮脏标签(后门)毒物攻击和三种类型的清洁标签毒药攻击的功效,这些毒物跨越了计算机视觉和恶意软件分类。我们的系统在所有攻击中都达到了98.4%的精度和96.8%的召回。我们还表明,我们的系统与专门攻击它的四种抗纤维法措施相对强大。
translated by 谷歌翻译
已知深度学习系统容易受到对抗例子的影响。特别是,基于查询的黑框攻击不需要深入学习模型的知识,而可以通过提交查询和检查收益来计算网络上的对抗示例。最近的工作在很大程度上提高了这些攻击的效率,证明了它们在当今的ML-AS-A-Service平台上的实用性。我们提出了Blacklight,这是针对基于查询的黑盒对抗攻击的新防御。推动我们设计的基本见解是,为了计算对抗性示例,这些攻击在网络上进行了迭代优化,从而在输入空间中产生了非常相似的图像查询。 Blacklight使用在概率内容指纹上运行的有效相似性引擎来检测高度相似的查询来检测基于查询的黑盒攻击。我们根据各种模型和图像分类任务对八次最先进的攻击进行评估。 Blacklight通常只有几次查询后,都可以识别所有这些。通过拒绝所有检测到的查询,即使攻击者在帐户禁令或查询拒绝之后持续提交查询,Blacklight也可以防止任何攻击完成。 Blacklight在几个强大的对策中也很强大,包括最佳的黑盒攻击,该攻击近似于效率的白色框攻击。最后,我们说明了黑光如何推广到其他域,例如文本分类。
translated by 谷歌翻译
Human parsing aims to partition humans in image or video into multiple pixel-level semantic parts. In the last decade, it has gained significantly increased interest in the computer vision community and has been utilized in a broad range of practical applications, from security monitoring, to social media, to visual special effects, just to name a few. Although deep learning-based human parsing solutions have made remarkable achievements, many important concepts, existing challenges, and potential research directions are still confusing. In this survey, we comprehensively review three core sub-tasks: single human parsing, multiple human parsing, and video human parsing, by introducing their respective task settings, background concepts, relevant problems and applications, representative literature, and datasets. We also present quantitative performance comparisons of the reviewed methods on benchmark datasets. Additionally, to promote sustainable development of the community, we put forward a transformer-based human parsing framework, providing a high-performance baseline for follow-up research through universal, concise, and extensible solutions. Finally, we point out a set of under-investigated open issues in this field and suggest new directions for future study. We also provide a regularly updated project page, to continuously track recent developments in this fast-advancing field: https://github.com/soeaver/awesome-human-parsing.
translated by 谷歌翻译
Recent CLIP-guided 3D optimization methods, e.g., DreamFields and PureCLIPNeRF achieve great success in zero-shot text-guided 3D synthesis. However, due to the scratch training and random initialization without any prior knowledge, these methods usually fail to generate accurate and faithful 3D structures that conform to the corresponding text. In this paper, we make the first attempt to introduce the explicit 3D shape prior to CLIP-guided 3D optimization methods. Specifically, we first generate a high-quality 3D shape from input texts in the text-to-shape stage as the 3D shape prior. We then utilize it as the initialization of a neural radiance field and then optimize it with the full prompt. For the text-to-shape generation, we present a simple yet effective approach that directly bridges the text and image modalities with a powerful text-to-image diffusion model. To narrow the style domain gap between images synthesized by the text-to-image model and shape renderings used to train the image-to-shape generator, we further propose to jointly optimize a learnable text prompt and fine-tune the text-to-image diffusion model for rendering-style image generation. Our method, namely, Dream3D, is capable of generating imaginative 3D content with better visual quality and shape accuracy than state-of-the-art methods.
translated by 谷歌翻译
To reproduce the success of text-to-image (T2I) generation, recent works in text-to-video (T2V) generation employ large-scale text-video dataset for fine-tuning. However, such paradigm is computationally expensive. Humans have the amazing ability to learn new visual concepts from just one single exemplar. We hereby study a new T2V generation problem$\unicode{x2014}$One-Shot Video Generation, where only a single text-video pair is presented for training an open-domain T2V generator. Intuitively, we propose to adapt the T2I diffusion model pretrained on massive image data for T2V generation. We make two key observations: 1) T2I models are able to generate images that align well with the verb terms; 2) extending T2I models to generate multiple images concurrently exhibits surprisingly good content consistency. To further learn continuous motion, we propose Tune-A-Video with a tailored Sparse-Causal Attention, which generates videos from text prompts via an efficient one-shot tuning of pretrained T2I diffusion models. Tune-A-Video is capable of producing temporally-coherent videos over various applications such as change of subject or background, attribute editing, style transfer, demonstrating the versatility and effectiveness of our method.
translated by 谷歌翻译
The number of international benchmarking competitions is steadily increasing in various fields of machine learning (ML) research and practice. So far, however, little is known about the common practice as well as bottlenecks faced by the community in tackling the research questions posed. To shed light on the status quo of algorithm development in the specific field of biomedical imaging analysis, we designed an international survey that was issued to all participants of challenges conducted in conjunction with the IEEE ISBI 2021 and MICCAI 2021 conferences (80 competitions in total). The survey covered participants' expertise and working environments, their chosen strategies, as well as algorithm characteristics. A median of 72% challenge participants took part in the survey. According to our results, knowledge exchange was the primary incentive (70%) for participation, while the reception of prize money played only a minor role (16%). While a median of 80 working hours was spent on method development, a large portion of participants stated that they did not have enough time for method development (32%). 25% perceived the infrastructure to be a bottleneck. Overall, 94% of all solutions were deep learning-based. Of these, 84% were based on standard architectures. 43% of the respondents reported that the data samples (e.g., images) were too large to be processed at once. This was most commonly addressed by patch-based training (69%), downsampling (37%), and solving 3D analysis tasks as a series of 2D tasks. K-fold cross-validation on the training set was performed by only 37% of the participants and only 50% of the participants performed ensembling based on multiple identical models (61%) or heterogeneous models (39%). 48% of the respondents applied postprocessing steps.
translated by 谷歌翻译
The recurrent structure is a prevalent framework for the task of video super-resolution, which models the temporal dependency between frames via hidden states. When applied to real-world scenarios with unknown and complex degradations, hidden states tend to contain unpleasant artifacts and propagate them to restored frames. In this circumstance, our analyses show that such artifacts can be largely alleviated when the hidden state is replaced with a cleaner counterpart. Based on the observations, we propose a Hidden State Attention (HSA) module to mitigate artifacts in real-world video super-resolution. Specifically, we first adopt various cheap filters to produce a hidden state pool. For example, Gaussian blur filters are for smoothing artifacts while sharpening filters are for enhancing details. To aggregate a new hidden state that contains fewer artifacts from the hidden state pool, we devise a Selective Cross Attention (SCA) module, in which the attention between input features and each hidden state is calculated. Equipped with HSA, our proposed method, namely FastRealVSR, is able to achieve 2x speedup while obtaining better performance than Real-BasicVSR. Codes will be available at https://github.com/TencentARC/FastRealVSR
translated by 谷歌翻译
In contrastive self-supervised learning, the common way to learn discriminative representation is to pull different augmented "views" of the same image closer while pushing all other images further apart, which has been proven to be effective. However, it is unavoidable to construct undesirable views containing different semantic concepts during the augmentation procedure. It would damage the semantic consistency of representation to pull these augmentations closer in the feature space indiscriminately. In this study, we introduce feature-level augmentation and propose a novel semantics-consistent feature search (SCFS) method to mitigate this negative effect. The main idea of SCFS is to adaptively search semantics-consistent features to enhance the contrast between semantics-consistent regions in different augmentations. Thus, the trained model can learn to focus on meaningful object regions, improving the semantic representation ability. Extensive experiments conducted on different datasets and tasks demonstrate that SCFS effectively improves the performance of self-supervised learning and achieves state-of-the-art performance on different downstream tasks.
translated by 谷歌翻译
Recently, the success of pre-training in text domain has been fully extended to vision, audio, and cross-modal scenarios. The proposed pre-training models of different modalities are showing a rising trend of homogeneity in their model structures, which brings the opportunity to implement different pre-training models within a uniform framework. In this paper, we present TencentPretrain, a toolkit supporting pre-training models of different modalities. The core feature of TencentPretrain is the modular design. The toolkit uniformly divides pre-training models into 5 components: embedding, encoder, target embedding, decoder, and target. As almost all of common modules are provided in each component, users can choose the desired modules from different components to build a complete pre-training model. The modular design enables users to efficiently reproduce existing pre-training models or build brand-new one. We test the toolkit on text, vision, and audio benchmarks and show that it can match the performance of the original implementations.
translated by 谷歌翻译